SiMS10/4-11D2
Sainty-Tech Communications Limited

Feature

-Precision MEMS process

- High performance, shielded, Micro-cavity structure
- Silicon substrate, 50Ω CPW output
-Au wire bonding, for MCM applications
Environmental Specifications

Operating Temperature	$-55^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$
Max. Input Power	35 dBm

Electrical Specifications $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Parameter	Min.	Typ.	Max.	Unit
Center Freq. $\left(\mathrm{f}_{0}\right)$	-	10	-	GHz
Pass Band	8	-	12	GHz
Ripple in Pass band	-	-	1	dB
Insertion Loss @ f_{0}	-	-	2.8	dB
Return Loss	15	-	-	dB
Out of band	$\geqslant 30 @ 7.07 \mathrm{GHz} \mathrm{\& 13.04GHz}$	dB		
	$\geqslant 40 @ 6.75 \mathrm{GHz} \mathrm{\& 13.21GHz}$	dB		
	$\geqslant 60 @ \mathrm{DC}-5.41 \mathrm{GHz}$	dB		
	$\geqslant 60 @ 13.5-13.9 \mathrm{GHz}$	dB		
Group Delay Variation	$\leqslant 0.3 @ 8-12 \mathrm{GHz}$	ns		
Linear Phase	$\leqslant \pm 14 @ 8-12 \mathrm{GHz}$	\circ		

S2P file name: SiMS10_4-11D2.s2p

Outline Drawing

Symbol	Value (mm)		
	Min.	Nominal	Max.
A	7.9	-	8.0
B	3.3	-	3.4

Typical Test Curves

Insertion Loss VS Frequency $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Insertion Loss \& Return Loss VS Frequency $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Broadband Insertion Loss VS Frequency ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Recommended Assembly Diagrams

Application Notes:

1. The chip is back-metalized and can be die mounted with AuSn eutectic performs or with electrically conductive epoxy (for example ME8456).
2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. (2.9ppm $/{ }^{\circ} \mathrm{C}$) with Silicon, thickness 0.2 mm max.
3. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
4. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
5. Recommended to use T structure as below for bonding.

Rogers 5880, 10mil	Rogers 4350, 10mil	
	0.55	

[^0]
[^0]: 6. If you have any questions, please contact us.
