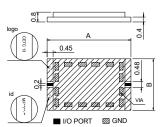


Feature

- Precision MEMS process
- High performance, shielded, Micro-cavity structure
- Silicon substrate, 50Ω CPW output
- Au wire bonding, for MCM applications

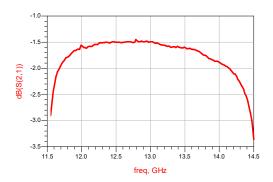
Environmental Specifications

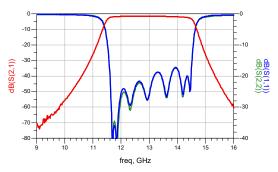

Operating Temperature	-55°C∼+85°C	
Storage Temperature	-55°C∼+125°C	
Max. Input Power	35dBm	

Electrical Specifications(T_A=+25°C)

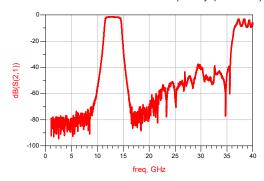
Parameter	Min.	Тур.	Max.	Unit
Center Freq. (f₀)	-	13	-	GHz
Pass Band	11.75	-	14.25	GHz
Ripple in Pass band	-	-	1	dB
Insertion Loss @ f₀	-	-	1.9	dB
Return Loss	15	-	-	dB
Out of band	≥40@DC~10.2GHz		dB	
Attenuation	≥40@15.7~20GHz		dB	
Group Delay Variation	≤1.2@PassBand			ns
Linear Phase	≤±10@PassBand			٥

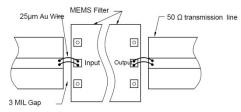
S2P file name: SiMF13_2R5-7D1.s2p


Outline Drawing

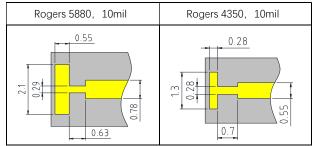

Symbol	Value (mm)		
	Min.	Nominal	Max.
А	6.9	-	7.0
В	2.8	-	2.9

Typical Test Curves


Insertion Loss VS Frequency (T_A=25°C)


Insertion Loss & Return Loss VS Frequency (T_A=25°C)

Broadband Insertion Loss VS Frequency (T_A=25°C)



Recommended Assembly Diagrams

Application Notes:

- 1. The chip is back-metalized and can be die mounted with AuSn eutectic performs or with electrically conductive epoxy (for example ME8456).
- 2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. (2.9ppm/°C) with Silicon, thickness 0.2mm max.
- 3. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 4. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 5. Recommended to use T structure as below for bonding.

6. If you have any questions, please contact us.