

#### **Feature**

Pass Bands: 1.6GHz ~ 3.2GHz, 2.6GHz ~ 4.9GHz, 4.0GHz ~ 6.7GHz, 6GHz ~ 8.2GHz;

Insertion Loss in pass bands: ≤5.6dB Isolation between pass bands: ≥30dB

Size: 4.35x3.4x0.1mm

### Description

This device is a PIN monolithic integrated switch filter bank chip. Adopt +5V/-5V logic control; operating current is 25mA typ. and switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

### **Absolute Rating**

| Control Voltage       | -1.5V~+6V  |
|-----------------------|------------|
| Input Power           | 27dBm      |
| Storage Temperature   | -65~+150°C |
| Operating Temperature | -55~+125°C |

# **Electrical Specifications 1** (T<sub>A</sub>=+25°C)

| Spec.          | Pass band 1     | Pass band 2         | Unit |
|----------------|-----------------|---------------------|------|
| Freq. Range    | 1.6~3.2         | 2.6~4.9             | GHz  |
| Insertion Loss | ≤5.4            | ≤5.6                | dB   |
|                | ≥20@1GHz&3.8GHz | ≥20@1.64GHz&5.91GHz | dBc  |
| Rejection      | ≥40@0.82G&4.1G  | ≥40@1.38GHz&6.7GHz  | dBc  |
| VSWR           | ≤1.8            |                     |      |

## **Electrical Specifications 2** (T<sub>A</sub>=+25°C)

| Spec.          | Pass band 3         | Pass band 4         | Unit |
|----------------|---------------------|---------------------|------|
| Freq. Range    | 4.0~6.7             | 6~8.2               | GHz  |
| Insertion Loss | €5                  | ≤4.8                | dB   |
| Rejection -    | ≥20@3.0GHz&7.8GHz   | ≥20@4.85GHz&9.65GHz | dBc  |
|                | ≥40@2.78GHz&8.35GHz | ≥40@4.5GHz&10.25GHz | dBc  |
| VSWR           | ≤1.8                |                     |      |

S2P file name: BWSBF-2\_8-4.s2p



# **Typical Test Curves**





### Mechanical Specification



#### **Truth Table**

| Control Voltage                   |    |    | D 1 1 |               |  |
|-----------------------------------|----|----|-------|---------------|--|
| V1                                | V2 | V3 | V4    | Pass bands    |  |
| 0                                 | 1  | 1  | 1     | 1.6GHz~3.2GHz |  |
| 1                                 | 0  | 1  | 1     | 4.0GHz~6.7GHz |  |
| 1                                 | 1  | 0  | 1     | 2.6GHz~4.9GHz |  |
| 1                                 | 1  | 1  | 0     | 6.0GHz~8.2GHz |  |
| Status: Low (0) -5V; High (1) +5V |    |    |       |               |  |

Remarks: There are internal current-limiting resistors. When current of each channel is higher than 20mA, external resistors can be properly adjusted.

### **PINS Definitions**

| Pin No. | Symbol      | Description         |
|---------|-------------|---------------------|
| 3,4     | RFin, RFout | RF Input, RF Output |
| 1,2,5,6 | V1,V2,V3,V4 | Control ports       |

#### Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm
- 3. Typical bond pad is 100um \*100um, which is 50um away from chip edge.
- 4. The bottom of the device is gold plated, should be grounded.

### **Recommended Assembly Diagrams**



### **Functional Diagram**



#### **Application Notes:**

- 1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.
- 2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion.  $(5.8 \times 10-6/)$  with GaAs.
- 3. Recommend using  $\Phi$ 25um Au wire for bonding, whose length is around 200um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C  $\,$  within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.