

Feature

Pass Bands: 9.85GHz ~ 10.9GHz, 10.6GHz ~ 11.65GHz, 11.35GHz ~ 12.4GHz, 12.1GHz ~ 12.15GHz;

Insertion Loss in pass bands: ≤9dB Isolation between pass bands: ≥30dB

Size: 5.5x4.5x0.15mm

Description

This device is a FET switch filter bank MMIC based on GaAs processing. Adopt +5V/0V logic control or -5V/0V logic control, switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

Absolute Rating

Control Voltage	-1V~+5V	
Input Power	27dBm	
Storage Temperature	-65~+150°C	
Operating Temperature	-55~+125°C	

Electrical Specifications 1 (T_A=+25°C)

Spec.	Pass band 1	Pass band 2	Unit
Freq. Range	9.85~10.9	10.6~11.65	GHz
Insertion Loss	≤9	≤9	dB
Rejection	≥40@8.6GHz	≥40@9.3GHz	dBc
	≥40@12.5GHz	≥40@13.3GHz	dBc
VSWR	≤1.8		_

Electrical Specifications 2 (T_A=+25°C)

Spec.	Pass band 3	Pass band 4	Unit	
Freq. Range	11.35~12.4	12.1~13.15	GHz	
Insertion Loss	≤ 9	≤ 9	dB	
Rejection	≥40@10GHz	≥40@10.8GHz	dBc	
	≥40@14GHz	≥40@14.5GHz	dBc	
VSWR	≤1.8		_	

S2P file name: PDSBF4-9R85_13R15-5D7.s2p

Typical Test Curves

Pass band 1 Insertion Loss VS Frequency (T_A=25°C)

Pass band 2 Insertion Loss VS Frequency (T_A=25°C)

Pass band 3 Insertion Loss VS Frequency (T_A=25°C)

Pass band 4 Insertion Loss VS Frequency (T_A=25°C)

Insertion Loss VS Frequency (T_A=25°C)

Return Loss VS Frequency (T_A=25°C)

PINS Definitions

Mechanical Specification

Pin No.	Symbol	Description
1, 2 RF1,	RF1, RF2	RF Input, RF
		Output
3, 8	VEE	Driver Power
3, 0	VLL	Supply Voltage
4 7	VP1, VP0	+5/0V Control
4, 7	VPI, VPU	ports
5, 6	VN1, VN0	0/-5V Control
	VINI, VINO	ports

Recommended Assembly Diagrams

Truth Table

D: 1/ I: 0/FF F1/)					
Driver Voltage (VEE=-5V)					
+5/0V C	ontrol		0/-5V Control		Pass bands
VP1	VP0		VN1	VN0	
0V	0V		VN1	VN0	9.85-10.9GHz
0V	5V		-5V	-5V	10.6-11.65GHz
5V	0V		-5V	0V	11.35-12.4GHz
5V	5V		0V	-5V	12.1-13.15GHz

Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm
- 3. Typical bond pad is 100um *100um, which is 50um away from chip edge.
- 4. The bottom of the device is gold plated, should be grounded.

Functional Diagram

Application Notes:

- 1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.
- 2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. (5.8×10-6/) with GaAs.
- 3. Recommend using Φ 25um Au wire for bonding, whose length is around 200um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.